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LUX is the latest development in LBNL’s
history of ultrafast x-ray facilities

• Kim, K.-J., S. Chattopadhyay, and C.V. Shank, “Generation of femtosecond x-ray pulses by 90 degree Thomson
scattering”, Nuc. Inst. and Meth. in Phys. Res. A, 1994. 341: p. 351-354.

• Zholents, A.A. and M.S. Zolotorev, “Femtosecond x-ray pulses of synchrotron radiation”, Phys. Rev. Lett., 1996.
76(6): p. 912-915.

• Leemans, W.P., et al.,” X-ray based time resolved electron beam characterization via 90° Thomson scattering”,
Phys. Rev. Lett., 1996. 77(20): p. 4182-4185.

• Schoenlein, R.W., et al., “Femtosecond x-ray pulses at 0.4 angstroms generated by 90° Thomson scattering: A
tool for probing the structural dynamics of materials.”,Science, 1996. 274: p. 236-238.

• Zholents, A., P. Heimann, M. Zolotorev, and J. Byrd, “Generation of subpicosecond x-ray pulses using RF orbit
deflection”, Nuc. Instr.and Methods in Phys. Res. A, 1999. 425: p. 385-389.

• Schoenlein, R.W., et al.,” Generation of x-ray pulses via laser-electron beam interaction”, Appl. Phys. B, 2000.
71: p. 1-10.

• Schoenlein, R.W., et al.,” Generation of femtosecond pulses of synchrotron radiation”, Science, 2000. 287: p.
2237-2240.

Thomson scattering Laser slicing R. Schoenlein poster
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• Ultrafast laser pulse “pumps” a process in the sample
• Ultrafast x-ray pulse “probes” the sample after time !t

• Ultrafast lasers an integral part of the facility
• Synchronized x-ray and laser pulses

• Multidimensional spectroscopies e.g. 3 laser pump beams and an x-ray probe
• Two x-ray wavelengths

LUX facility concept for time-resolved
spectroscopies

Laser excitation pulse

X-ray probe pulse

 !t

ion or e-

detectorγ-detector

sample
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• Combines diffraction and spectroscopy
• Nuclear positions and electronic, chemical or structural probes

A refined tool supporting a range of techniques for
structural dynamics applications
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Plus photoelectron spectroscopy, photoemission microscopy, etc

• Access new science in the time-domain x-ray regime
• Time dynamics parameters have not been widely exploited in the

x–ray, mostly due to lack of sources
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Repetition rate vs. energy per pulse

X-ray pulse
repetition rate

X-ray pulse energy

MHz-GHz, nJs,
limited by acoustic

velocities in
samples, good for

counting expt’s,
photoemission

imaging

10-100Hz, mJs,
limited by sample
damage, many high
field effects

1 kHz-100kHz, µJs
ideal match to
ultrafast lasers and
sample relaxation /
replenishment
considerations, single
photon regime

LUX
modest power, avoid
sample damage, high
signal averaging rate
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We propose a facility for ultrafast dynamics
which is driven by scientific requirements

• Pulse duration 10-200 fs variable, < 1 fs in  future
• Flux per pulse ~106-1013 (ph/pulse/0.1%BW)
• Photon range  20 eV to 12 keV
• Tunability independently tunable beamlines
• Repetition rate 10 kHz to match pump-probe experiments
• Power desnity 1015 Wcm-2 achievable
• Synchronization 10’s fs pump laser – probe x-ray
• Polarization lhc, rhc soft x-ray / linear hard x-ray
• Multiple laser systems Master oscillator

Photocathode laser
FEL seed laser
Beamline endstation pump lasers

• Number of beamlines ~ 20 independent beamlines
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There are many proposed ultrafast x-ray
projects around the world

• LCLS*: SASE FEL (funded)
• BNL DUV FEL*: harmonic generation in FEL from laser seed (operational)
• DESY TTF-II: linac-based SASE FEL (funded)
• BESSY FEL: harmonic generation in FEL from laser seed
• SPPS*: spontaneous emission from short bunches (operational)
• ALFF: Argonne linear FEL, SASE soft x-ray
• European X-ray FEL: SASE FEL
• Daresbury 4GLS: single-pass energy recovery linac with variety of x-ray

sources under consideration
• Cornell / TJNAF ERL*: single-pass energy recovery linac optimized for

diffraction limited undulator radiation and high average power
• MIT-Bates X-ray FEL: single-pass linac with seeded and SASE FEL’s
• Arc-en-Ciel*: linac based, recirculation or energy recovery mode, SASE and

seeded FEL’s
• FERMI@Elettra: linac-based FEL
• BNL PERL: energy recovery linac
 * Presentations at this meeting
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LUX accelerator design is based on a
recirculating linac

High-
brightness rf
photocathode

gun

Superconducting
rf linacs

Magnetic arcs
transport each
energy beam

Beam dump absorbs
~ 30 kW beam
power

Retain option for energy recovery by
building the final arc
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Accelerating linac cw power considerations, based
on TESLA technology

• Filling time > time between bunches - operate in cw mode
• Thermal connection from cavity bath to He supply to accommodate

dynamic heat load ~40 W/cavity
• Increase diameter, or additional connectors to liquid He supply

Cold Mass Support

300 mm

0.025 bar, 2 K He Gas Return Pipe

5 K Gas Forward

40 K Gas Forward

2K Two-Phase, 1.9 K He 
Header Pipe >100 mm Dia

Electron Beam Pipe

Vacuum Vessel

Cool Down Line

RF Coupler

8 K Return

80 K Return

Ti Cavity He Tank, which 
is 15 mm larger than the 
TESLA cavity tank

100 mm Dia. Cavity 
Feed Pipe

• Input coupler
• 10 – 20 kW CW
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LUX based on a recirculating linac provides
a refined source of ultrafast x-ray pulses

• Compact (~ 150 x 50 m)
• Flexible configuration

– Each pass provides
opportunities for
• Manipulation of the

electron beam
• Photon production

– Multiple beamlines

– Variable repetition rate
• Energy recovery option

• RF photocathode guns produce high-quality electron beams
• 2-3 mm-mrad, 1 nC, 30 ps
• Ability to manipulate the beam emittance

• Compress beam from the injector to 2-3 ps
• Accelerate in multiple passes through linac
• 1-3 GeV beam generates x-rays

• 10-100 fs x-ray pulses
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LUX provides tunable ultrafast x-ray
pulses for up to ~ 20 beamlines

• Soft x-rays
• Laser-seeded

cascaded harmonic-
generation in FEL’s

• Not SASE
– 20-1000 eV
– Spatial and temporal

coherence
– 10-100 fs
– ~ Transform limited

• Hard x-rays
• Spontaneous emission

in narrow-gap short-
period insertion
devices

– 1-12 keV
– 50-100 fs
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Sophisticated short-pulse laser systems are an
integral component of the facility

Laser oscillator Amplifier &
conditioning

Beamline endstation
lasers

Photocathode laser

Harmonic cascade FEL
seed lasers

Accelerator RF signals

Laser oscillator

Spatial
profiling

Amplitude
control

Amplifier

Pulse
shaping

Multiply

Laser oscillator Amplifier &
conditioning

Laser oscillator Amplifier &
conditioning

Laser master
oscillator



John Corlett,  April 29, 2004

All-optical timing system to achieve synchronization
between laser pump and x-ray probe

• Laser-based timing system
• Stabilized fiber distribution system
• Interconnected laser systems

• Active synchronization 
• Passive seeding
• RF signal generation
 20–50 fs synchronization

Photo Injector
Laser

RF crab cavity

Master Oscillator
Laser

FEL
Seed Laser

Multiple
Beamline Endstation

Lasers

FEL
Seed Laser

Linac RF

Optical fiber distribution network
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cw reference laser
interferometer

L~100 m

Path Length Control
  ΔL= ±2 µm
Δt= ±7 fs

Agilent 5501B
±2×10-9 one hour (Δλ/λ)
±2×10-8 lifetime

Beamline 1

Beamline 2

fiber-based system EDFA
(fiber amp)

PZT control
path length

EDFA
(fiber amp)

Master
Oscillator

Master oscillator and timing distribution

28 dB
AMP

RF Clock
1.3/n GHz

Amplifier

LPF

error signal

17 dBm mixer

Modelocked Laser
1.3 GHz

Trep

BPF 1.3 GHzf1/Trep

Modelocked Fiber Laser Oscillator – RF Stabilized
• Phase-lock all lasers to master

oscillator
• Derive rf signals from laser

oscillator
• Fast feedback to provide local

control of accelerator rf systems
 Synchronization of 20-50 fs
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Typical end station concept

Precisely timed laser and linac x-ray pulses

Linac x-ray
pulse

Laser master
oscillator pulse

End station

Pulse diagnosticsLaser and
delay lines

~ 10 m

Modelocked
Oscillator

• Active laser synchronization
– Independent oscillators at each endstation
– Complete independence of endstation lasers

– Wavelength, pulse duration, timing,
repetition rate etc.
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Ti:sapphire
Oscillator

<100 fs, 2 nJ
<50 fs jitter

grating
stretcher

Ti:sapphire
Regenerative

Amplifier

Q-switched
Nd:YAG (2w)

grating
compressor

>1 mJ, 800 nm, 10 kHz

Optical
Parametric
Amplifier

Beamline endstation lasers

PC
PC

λ/4

typical regenerative amplifier

~20 passes ⇒ ΔL=1 µm (Δt=66 fs)

• interferometric stabilization
• cross-correlate with oscillator (compress first)
• temperature stabilize (Zerodur or super-invar)

chirped-pulse amplification

RF derived
from optical

master
oscillator
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Laser-driven rf photocathode
 10 kHz pulse repetition rate

• Laser
– 1 µJ, 35 ps, 10 kHz, 266 nm
– Spatial and temporal control to

provide low-emittance electron
bunches

• Cathode
– Cs2Te

• RF field
– 64 MVm-1

• ANSYS analysis of rf heating and thermal
management

• Digital control of rf phase and amplitude
• Active phase control reduces stored

energy

Phase flip at 5µsec

Excess stored energy

Cavity field

Time
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Laser pulse shaping influences the
brightness of the emitted electron bunch

grating
stretcher

Ti:sapphire
Regenerative

Amplifier

Q-switched
Nd:YAG (2ω)

grating
compressor

Pulse
Shaper

Ti:sapphire
Oscillator
100 fs, 2 nJ
<0.5 ps jitter

RF from
master

oscillator

2ω, 3ω

>1 mJ, 800 nm, 10 kHz

Pockels
Cell

polarizer

photo-
switch

spectral filter (computer controlled)
   - spatial light modulator
   - acousto-optic modulator

Pulse Shaper (A.M. Weiner)

Dazzler - FastLite Inc.
acousto-optic dispersive filter

(P. Tournois et al.)

acoustic wave (computer programmable)
   - spectral amplitude
   - temporal phase

TeO2 crystal

Pulse Amplitude Stabilizer
Patent:: LLNL (R. Wilcox)

Deformable
mirror
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Hard x-rays from spontaneous emission,
electron and photon pulse manipulation

• Hard x-rays
• Spontaneous emission

in narrow-gap short-
period insertion
devices

– 1-12 keV
– 50-100 fs
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Ultrafast hard x-ray pulses produced by electron
bunch manipulation and x-ray compression

2 ps

~ 50 fs

RF deflecting cavity

Electron trajectory
in 2 ps bunch
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#Hard x-ray undulator beamline

Source dimensions
390 µm (h) x 20 µm (v)

Source divergence
50 µrad (h) x 300 µrad (v)

Focus dimensions
20 µm (h) x 12 µm (v)

Focus divergence
1.2 mrad (h) x 500 µrad (v)

• Conventional optical elements
– Temporal stability will be important

Collimating
mirror

Compressor &
monochromator

Focussing

Poster by P. Heimann
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Tuning x-ray pulse compression as a function of
photon energy

• X-ray compression

• Add rotation ϕ about axis normal to Bragg planes (Bragg angle θ)

⇒ Variation of crystal asymmetry angle α between Bragg planes and
crystal surface, keeping pulse compression fixed

ϕ = 90°
α = 0°

ϕ = 45°
α = 11°

ϕ = 0°
α = 15°

• Limitations
• Penetration of x-rays into crystal:  N λ ~ 1 µm (3 fs) for Si(111) at 8 keV

   Δl = 2 Δ y sin θ sin α
sin θ + α
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Master Oscillator
Laser

Δt Δt

electron bunch

laser pulse

x-rays

RF

crab cavity
3.9 GHz

x-ray pulse
compression
asymmetric
Bragg x-tals

Δy

Δt

Δy
Low-noise

Amp
3.9 GHz

• Electron bunch timing jitter ~ 500 fs
• Deflecting cavity phase stability < 0.01°

– 35 fs contribution from rf phase noise
– Expect synchronization better than 50 fs

Synchronize deflecting cavities and pump laser for
hard x-ray production
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LUX - hard x-ray pulses
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• Same flux/pulse as 3rd generation light sources
• 1000 times shorter pulse
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EUV - soft x-rays from harmonic
generation in FEL’s

• Soft x-rays
• Laser-seeded

cascaded harmonic-
generation in FEL’s

• Strong modulation
• Low-gain FEL
• Not SASE

– 20-1000 eV
– Spatial and temporal

coherence
– 10-100 fs
– ~ Transform limited
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Dispersive section strongly increases
bunching at fundamental wavelength

and at higher harmonics

In a downstream undulator resonant at
λ0/n, bunched beam strongly radiates at

harmonic via coherent spontaneous
emission

nπ-nπphase

en
er

gy

-π π

Input Output
e-beam phase space:

Energy-modulate e-beam in
undulator via FEL resonance with

coherent input radiation

Harmonic generation scheme -
coherent source of soft x-rays

[1] L.-H. Yu et al, “High-Gain Harmonic-Generation Free-Electron Laser”, Science 289 932-934 (2000)
[2] L.H. Yu et al., "First Ultraviolet High Gain Harmonic-Generation Free Electron Laser", Phys. Rev. Let. Vol 91, No. 7, (2003)

modulator  radiator
bunching
chicane

laser pulse

e- bunch
Developed and demonstrated by L.-H. Yu et al, BNL [1]

Talk by X.J. Wang
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• Strong modulation defines wavelength, timing, and duration of x-ray pulse

Bunching and harmonic content following
λ=240 nm modulator

• Low gain regime in radiators
• Output is temporally and spatially coherent and approximately transform limited
• Different from SASE

• Process is initiated and output defined by a seed laser
• ultra-stable pulse duration
• synchronized to seed laser
• temporal coherence imprinted by seed laser
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seed laser pulse modulator 3rd - 5th
harmonic
radiator

modulator 3rd - 5th
harmonic
radiator

Cascaded harmonic generation scheme

Delay bunch in micro-orbit-bump (~50 µm)

Low ε electron pulse Unperturbed electrons

seed laser pulse

tail head

radiator radiatormodulatormodulator

disrupted region
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User has control of the FEL x-ray output
properties through the seed laser

• OPA provides controlled optical seed for the free electron laser

• Wavelength tunable
– 190-250 nm

• Pulse duration variable
– 10-200 fs

• Pulse energy
– 10-25 µJ

• Pulse repetition rate
– 10 kHz

• Endstation lasers seeded by or synchronized to Ti:sapphire oscillator
– Tight synchronization <20 fs

Ti:sapphire
Oscillator

<100 fs, 2 nJ
<50 fs jitter

grating
stretcher

Ti:sapphire
Regenerative

Amplifier

Q-switched
Nd:YAG (2ω)

grating
compressor

RF derived
from optical
from master

oscillator

~1 mJ, 800 nm, 10 kHz

Optical
Parametric
Amplifier

>10% conv. efficiency

e-beam

laser seed pulse

undulator undulator

undulator 
harmonic

n undulator stages

x-ray

Endstation synch.
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Multiple independent harmonic cascades –
independent wavelength tuning for each beamline

20 eV beamline - single stage (4th) harmonic generation

100 eV beamline - two-stage (16th) harmonic generation

500 eV beamline - three-stage (80th) harmonic generation

1000 eV beamline - four-stage (200th) harmonic generation

Endstation

Endstation

Endstation

Endstation
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Harmonic cascades
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FEL simulations

• At each modulator,
radiation interacts with
“virgin” e-

• At each harmonic
upshift λ ⇒ λ/n
(modulator to radiator),
macro-particle phase
multiplied by n

• Bunching effects of
dispersive section
visible in change from
Z=6 m in 48-nm
modulator to Z=0.4m
scatter plot in 12-nm
radiator

Z=0 m Z=1.8 m Z=3.6 m

Z=0 m

Z=0 m

Z=0.4 m

Z=3 m Z=6 m

240-nm
modulator

1.0 GW

0.4 GW
48-nm
radiator

48-nm
modulator

2504

25040.4 GW

48-nm
modulator

2510

2508

En
er

gy
 (

M
eV

)

θ (radians)

θ (radians)

-π +π

-5π +5π

-π +πθ (radians)

+4π-4π θ (radians)
2496

2496

2490

2492

Z=5.4 mZ=3.4 m

Z=4.4 mZ=2.4 m

120  MW
12-nm
radiator

Z (m) 3.6

4.4

6.0

5.4Z (m)

Z (m)

Z (m)
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Harmonic cascades - coherent, high-flux,tunable

Endstation

Endstation

Endstation

Endstation

15-33 eV
~ 1013 photons/pulse

190-250 nm seed laser 
20 µJ in 200 fs

30-163 eV
~ 1012 photons/pulse

134-816 eV
~ 1011 photons/pulse

670-1200 eV
~ 1010 photons/pulse

•103-105 times 3rd
generation light sources
flux/pulse

•1000 times shorter pulse
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Photon energy requirements

• VUV photoemission of valence states: 15-100 eV

• C, N, and O K-edges: 290 eV, 400 eV, 530 eV

• Fe, Ni, Cu, Zn, Mg, Al, Si: 706 eV, 852 eV, 930 eV, 1020 eV, 1300 eV,
1560 eV, 1840 eV

• Transition metal L-edges: 600-1000 eV

• Diffraction studies >~ 1 keV

• LUX would provide up to 20 independently tunable beamlines offering
multiple users flexibility in photon energy

• Harmonic cascade FEL’s 15 eV to 1 keV

• Compressed spontaneous emission 1-12 keV
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Example - 100 eV photons

• Two-stage harmonic cascade FEL
• 1.1 GeV beam energy
• <25 µJ @ 200 nm seed pulse

• Variable pulse duration
• 10 fs - 200 fs

• >1011 photons in 100 fs, 1010 photons in 10 fs
• Approximately transform limited photon pulse (BW ~10-4 for 100 fs)

• Grating monochromator bandwidth ~10-4 gives ~10 meV
• Spatial and temporal coherence
• Repetition rate 10 kHz
• Tuning

• Change in seed laser wavelength
• Change in final undulator field, and upstream undulators

• Polarization
• L, R circular from helical undulator

• ~ seconds to change polarization
• 20% pulse-pulse fluctuations

• Average 0.1 % in 3 sec at 10 kHz
• Synchronization

• 20 fs timing jitter between pump laser and x-ray pulse
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Example - 10 keV photons

• Spontaneous emission in narrow-gap undulator
• 3.1 GeV beam energy
• 1 nC bunch charge
• 0.4 mm-mrad vertical emittance

• 5x106 photons
• 40 fs FWHM pulse
• Repetition rate 10 kHz
• Radiator bandwidth 0.7%

• X-ray compression optics bandwidth ~10-4 gives ~1 eV
• Tuning

• X-ray compression optics
• Change in current of superconducting undulator

• Polarization
• Linear in plane of undulator

• Few % pulse-pulse fluctuations
• Average 0.1 % in 1 sec at 10 kHz

• Synchronization
• 50 fs timing jitter between pump laser and x-ray pulse
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Attosecond x-ray production
development line

• 100 attosecond pulses at 1 nm wavelength in a
harmonic cascade FEL

• Manipulation of the electron beam by optical pulses

• Talk by A. Zholents
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800 nm
spectral

broadening and
pulse compression

e-beam

harmonic-cascade FEL

two period wiggler tuned
for FEL interaction at

800 nm

2 nm light from FEL

2 nm modulator chicane-buncher

1 nm radiator

dump

end
station

1 nm
coherent
radiation e-beam

end
station

time delay
chicane

Future development -
attosecond x-ray pulses

e-beam

Scheme gives a path toward future
attosecond science:

• Timescales for formation of band gaps
• Electron orbital changes

• Talk by A. Zholents
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• LUX is based on a refined, flexible, and upgradeable platform
consisting of a recirculating linac and ultrafast laser systems

• Timing and synchronization, matched to laser excitation sources, are
central concepts

• Provides versatile ultrafast x-ray experimental capabilities
• Multiple independently tunable beamlines
• Ultrashort and coherent pulses
• Well-characterized outputs
• Total synchronization
• Modest powers
• High signal averaging rates

• Combines diffraction and spectroscopy (nuclear positions and
electronic, chemical or structural probes) in the ultrafast x-ray
regime, providing a research tool for outstanding new science

LUX - proposal for a Linac/laser-based
Ultrafast X-ray facility


